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Structure of a hard-sphere fluid in hard wedges
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We investigate local structural properties of a hard-sphere fluid exposed to periodic arrays of parallel hard
wedges by means of grand canonical ensemble Monte Carlo simulations. The corrugated substrate is charac-
terized by the dihedral angle of the grooves, the angler2- y of the tips, and the lateral periodicity length
s, in the x direction; y is varied over the range/2< y< including a planar wall = 7) as a special case.

In the second lateral direction periodic boundary conditions are used, whereas confinement in the normal
directionz is accomplished by two opposite substrates sufficiently far apart. We analyze the ordering of the
fluid within the grooves and at the tips, respectively, in terms of the number dei{sity; v). The crossover
between these two regions exhibits pronounced density oscillations. From the density distribution we extract
the excess coveradgé(y), which up to now has been known only for=r; in this special case we find
excellent agreement with previous wotk(y) is composed of surface and line contribution whose relative
magnitude permits us to quantify corrugation effects vs planar confinep&t63-651X97)10507-4

PACS numbgs): 61.20.Ja, 61.20.Ne, 68.45v

[. INTRODUCTION meniscus forming inside the groovE?4]. Therefore, these
studies do not address packing effects occurring in a fluid
Confinement of a fluid by container walls imposes spatiawhen its confining walls start to interfere upon approaching
inhomogeneities in the fluid. They range from packing ef-the center of a wedge or when they form a tip. Such effects
fects close to the walll,2], which cause the local density to are important in the context of microfluidity, where one fol-
be a strongly oscillatory function of position, to quasimacro-lows the spreading of liquids in artificial groovg25—-27.
scopic effects such as wettif§—7]. Experimentally these At the surfaces of certain materials grooves may even form
effects are accessible by scattering of li§81, x rays, and spontaneously. One may encounter situations in which pla-
neutrong[9,10] as well as by force microscog1—14. In nar terraces of molecularly large areas are separated by steps
the vast majority of corresponding theoretical studies, thef a height of several atomic layers. Such structures can be
walls are modeled by substrate potentials which vary only irguite regular even in natural materials. For instance, minerals
the direction normal to the surface, but are translationallyof the palygorskite and sepiolite group consist of stacks of
invariant in lateral directions. However, even for atomically alternating tetrahedral and octahedral silicate shE2s
flat substrates this is an oversimplification because of th&@he structure and diffusion of “simple” fluids in grooves of
actual atomic corrugation of the substrate. this particular geometry were recently investigated by com-
Unless substrates have been treated with great care, theuter simulation method9].
are typically rough, so that an adjacent fluid is exposed to a To promote a more detailed understanding of fluid struc-
geometrically disordered wall. The effect of such disorder ortures caused by geometrical confinement, we analyze a hard-
wetting phenomena has been studied experimer{thfly18  sphere fluid exposed to a periodic array of wedges. In this
and theoretically[19-22 by coarse-grained approaches model attractive forces between fluid particles and with the
which average laterally over the local height variation of thesubstrate are absent, and the repulsive part of the interactions
substrate. Thus an understanding of tbeal microscopic is replaced by hard cores. This permits one to isolate the
structure of fluids filling the grooves and covering the tips ofpurely entropic effects of spatial confinements on fluid struc-
such disordered substrates is not yet available. ture. Since short-ranged order in fluids is dominated by pack-
This dearth of information is aggravated by the fact that iting effects the present results also provide important insight
became possible to prepare substrates which exhibit welinto the behavior of fluids endowed with more realistic inter-
defined geometric structures with lateral periodicity in oneaction potentials. Moreover, the hard-sphere fluid represents
direction. X-ray scattering provides spatially resolved den-a convenient starting point for analytic theories so that the
sity distributions of fluids in contact with such substratespresent results provide a benchmark for future density-
[23]. The first steps in understanding the wetting of singlefunctional calculations of such systems. Finally, we would
wedges were made, but they focused on the shape of thike to mention that by suitable choices of wall, solute, and
solvent, the present model of hard spheres in hard grooves
can closely resemble a colloidal suspension in which the
*Electronic address: M.Schoen@physik.tu-berlin.de colloidal particles behave effectively as hard spheres. There-
"Electronic address: dietrich@wptsb.physik.uni-wuppertal.de  fore, the results of the present Monte Carlo calculations are
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In order to describe the fluid in this confined geometry we
resort to the grand canonical ensemble in which a thermody-
namic state is uniquely specified by chemical potential
volumeV, and temperatur@. Because of the spatially inho-
mogeneous density distribution, the canonical ensemble with
its specification of the averaged mean density is a less favor-
able choice. Ensemble averad€) of an observabl®© can
be expressed 481]

(0)y=E2"13 (A3NN!)’1f _drNo(rMyex — BU(r™M)]
N=0 \%

=NZO fVNdrNO(rN)fMVT 2

=]

in the classical limit. In Eq(2), £ is the grand canonical
partition function, A is the thermal de Broglie wavelength
[31], B:=(kgT) ! (kg Boltzmann’s constantrN is an ab-
breviation for the set (i.e., the configuration

| {ry,r2, ... rn}, U is the configurational energy, ar@i(rN)
-0.5 x/s. =+4+0.5 is a molecular representation of the quantity of interest which
b may depend on additional external variables. In the present

FIG. 1. Side view of the model system consisting of two oppo-Ccontext we focus on
site hard wedges of side lengi and dihedral angley in the N
(x,z) plane. The origird of the coordinate system is at the center, , Ns ,
halfway in between the wedges. The corner of the wedge is located o(r',r)= 2:1 o(ri—r") ©)
at x/s,=0 and the two tips ax/s,= +0.5 are separated by a dis-
tances, along thez axis of the coordinate system. Also shown is a
point at a distanceZ in a direction normal to a wedge wall. The
system is periodically extended in tkedirection with a unit length
Sy. The depth of a wedges is denoted Dy

X/s,

becaus€O(r’))=p(r") is the local(numbej densityp(r’")

of the fluid. In Eq.(3), & is the Diracé function. In Eq.(2)

we assume that the fluid is composed of spherically symmet-

ric particles, so that their configuration is uniquely character-

ized by the set of coordinates of their centers.

In order to determing(r’) we resort to grand canonical

nsemble Monte CarlgGCEMQ simulations. In GCEMC

he generation of @numerical representation o Markov
chain of configurations proceeds in two consecutive steps. In
the first step one of th spheres, sa, is chosen at random

Il. NUMERICAL ASPECTS and displaced slightly within a small cube of side length

2dmax CENtered at its original position ; that is

also accessible to experimental tests.

In Sec. Il we present our model and discuss numerical
aspects of the simulations. Results are analyzed in Sec. Il
and summarized in Sec. IV.

A. Monte Carlo simulations in the grand canonical ensemble

In Fig. 1 we sketch our model system consisting of two =rkid (1-28) ()
opposing wedges characterized by their dihedral apgied ! ' ma ’
the lateral widths, . Tips at|x|/s,=0.5 are separated by a
distances, along thez axis of the coordinate system fixed at figurations[I], 1=(1,1,1), and is a vector whose three

the centel0. For sufficiently large values of;, this system yimensionless components are pseudorandom numbers dis-
reduces to two identical, independent interfaces between t Sbuted uniformly on the interva[0,1]. The parameter

fluid and the corrugated substrate separated by the bulk flui is adi :

. ) , ; max justed during a run to preserve an overall accep-
lThe a}ngllggr/] ar.ld the fixed side length'/2 determine the 5500 ratio of 40-60 % of all displacement attempts. From
ateral widths, : the theory of Markov processg32] it follows that the prob-

, ability of acceptance of the transitido—1| is governed by
X

s, S . )
5 = 5sin(y/2). (1) the ratiofl}l,/fl; [see Eq(2)], where

where superscripts refer to origingik] and new trial con-

f v —B(U—uN)—InN! =N In(A3V)]. (5
The system is therefore symmetric with respecktoy and purer e = AU=uN) =In n( ) ®

z—y planes(cf. Sec. 1l B. We employ periodic boundary
conditions[30] in x andy directions at planes= *s,/2 and
y==*s'/2. Therefore, the walls of our system represent a

sawtooth-shaped, corrugated substrate. The depth of each £l

groove is given byD = (s,/2)cot(y/2), so that in the limit of 2T —exd — BAU, ], (6)

large s, one recovers the single-wedge mo{24]. fﬂ[ V]T

SinceN does not vary during the first step, it is easy to verify
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whereAU,_,, is the change in configurational energy asso-C which is fixed throughout this papésee Sec. 1l B beloy
ciated with the displacement of sphereBecause of the in- Both addition (for configurations characterized by a finite
finitely repulsive fluid-fluid pair and substrate potentials, oner,_.,, i.e., Ul'1=0) and removal attempts are accepted with
has probability

AUk_,|:0 if rij>0', 1$|¢J$N and p:min[l,eXF(rk_,|)] (13)
|zl<zyan(Xi;y), 1<i<N, (") by comparing the pseudo-Boltzmann factor with a random

where numberé uniformly distributed on the intervdll,0] [30].

Zyai(X; y) = (% _X) COI(%

S, o _S B. Reliability of the computational scheme

2 sin(y/2)’ X< 2 The GCEMC algorithm just described was subjected to a
(8 number of consistency checks. Throughout this paper we fo-

cus exclusively on a thermodynamic state characterized by
©C= 7.056[see Eq(12)], corresponding to an average density
f a hard-sphere bulk fluid gf,o>: = p; =0.7016 obtained
rom GCEMC simulations. Because of the simple form of
I?e interaction potential, some properties of the hard-sphere
uid are amenable to approximate analytic analyses. For ex-

ple, the Carnahan-StarlitGS) equation of stat¢34] ex-
presses the pressuRegin a bulk hard-sphere fluid

is the position of closest contact of the centers of the spher
with the wall, rij=[(xi—X;)2+(yi—y;)*+(z—z)*]"? is
the distance between the centers of any pair of hard spher
ando is the hard-sphere diameter. If the wall is thought of as
being composed of fixed hard spheres of the same diamet
o, Zyal(X; v) + alsin(y/2) is the position of the centers of the
substrate spheres in the top layer of the substrate; this giv
rise to the last term in E(8). If the displacement of sphere

i violates one or both of the two conditions stated in &, BPcs 1+ 7+ 72— 7B
one hasAU,_,,=. Employing Metropolis’ algorithn{30] = A=) (14
the transitionk—| is either accepted with probabilify=1 Po K

(AU =0) or rejected p=0AU,_;==). in terms of the hard-sphere packing fractign=7p} /6, so

During the second step an attempt is made to altdry 3 ok . 5
either adding or removing one hard sphere in an unbiasewatﬁpcsla = Pcs=4.026 for the present choice. Further

way; that is, addition and removal are attempted with equaﬂqozrgctth\?a?l:isg? :fsorgzizrlka?? f:,}srgr;etirfnﬂﬁﬁ;i r‘|E(!1|ra)lt(\a/(ijatO e
probability. If AN, ., :=NN—NK'=+1, a new hard sphere P 9

is added from a virtual reservoir of matter at a randomly[sl]
determined position itY; if AN,_,;=—1, an already exist- 8P 2
ing sphere is chosen at random and subjected to a removal — =1+ —pya® lim g(r). (15
attempt. Addition and removal are governed[bge Eq(5)] Po 3 r—ot
il It can be determined in GCEMC simulations from the rela-
F['R]_ =exp(rg_), 9 tion
uVT
where for an addition attempt the argument of the pseudo- _ (N(r))
Boltzmann factor is given by A7 ppr?Ar

— [ i , i . . .
N =—INNT+B if  ry>o,  1<i#j<N which is normalized such thag(r —=)=1. In Eq. (16),

and |z|<zya(X;y), 1<i<N (10)  {N(r)) denotes the average number of hard spheres located
in a spherical shell of thicknessr separated from a refer-
becauseU!''=0 under these conditions; if one or both of ence sphere at the origin by a distanc&@he overbar is used
these conditions are violated('!= andr,_ =~ sothat to emphasize that, in the denominator of Eq16) is aver-
addition is rejected without further ado. For a removal at-aged over the Markov chain generated according to Sec.
tempt, Il A. Averages involve a few thousand statistically uncorre-
_inNN—B 11 lated configurations in which each sphere serves as a refer-
Mk =N ' 11 ence. For the present value Gf we obtain a contact value
becauseJ(K=0 in any eventi.e., UK vanishesby defini- g(*‘7+):3'2315' According to Eq. (15 this yields
tion for each of theN hard spheres iall configurations of ©~ =4:033, in very good agreement wiltts=4.026.

the Markov chailn The quantityB in Egs. (10) and (11), An additional check is prov_ided by decomposing the free

which is a dimensionless number, is related to the chemicdi"€rdy of the hard-sphere fluid into two terms,

potential via F—Fidy pex 17)
B=pBu—In(A3V)=C+In(V/o?3). (12

where the ideal-gas part is given [35]

Its introduction is convenient from a purely technical per-

id
spective of the simulations as demonstrated by Adg3B BF _ 3y 4+ _
In the same spirit we introduce the dimensionless number N N(ppo™) +3In(A/e) =1 (18)
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and the excess part §85] 4.0
BF f’f BPcs( ") } 7(4—37) 3.5 b
—_= ——-1|dInp'=———. (19
N 0 Pb g (1=7n) 19 3.0
Equations(17)—(19) together with the thermodynamic rela- 2.5 o
tion —~
~ 2.0 r
IF Sl ¥
w=| s (20) ' .
N T,V
' 1.0 & é?%% .
allow one to expresg in terms of the hard-sphere packing os | i@ v mew@m’wu et s
fraction v
. 0.0 .
M:M1d+ﬂex' -6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0

Bur9=In(p,o)+3In(Alo),

(21)

FIG. 2. The local number densip/ (z) = p(z) o° [see Eq(23)]

87— 972+ 373 of a hard-sphere fluid confined by two planar walits view of the
B MEX:LJ symmetry of the system data are presented only for the lower half
(1-mn) of the systemz/s,<0.0; see Fig. Las a function of the normal

For our present choice @ =7.056[see Eq(12)] we obtain
o)
agreement

py=0.7016 from GCEMC
C—Inpf=Bu*=7.410, in

simulations,
excellent

Eq. (21) for the same density.

distancez* =zo 1 () for sf =s,0~1=12. The positions of the
nuclei of the top layer of the lower substrate is giverzlyy= — 6 so

that that forz* < —5 (indicated by the vertical lineo* (z) =0. Extrapo-
with lation of p* (z) to z* — —5 yields the value 3.972. For comparison
Bu=7.397 calculated directly from the third expression inwe also show a cuyb(x=constz; ) [see Eq.22)] along an arbi-

trarily selected linex* =4.075 after the corresponding density pro-

After passing these consistency checks in the bulk wdile was smoothed appropriatelgee Sec. Ill A (+). The horizon-

now turn to the local number density

oy, (Nx,Zi9))
PEY = er

(22

tal line indicates the bulk densify} =0.7016.

irrespective ofx andy. The plot in Fig. 2 shows agreement

with this relation within numerical accuracy for the special

- . . . _ casey=m (for other anglesy, see below s; =12.0 and
describing the microscopic fluid structure in the geometryg « —10.0 for which all the results below are obtained. Thus

shown in Fig. 1. For a given configuratiofN(x,z;y)) isthe . .=\ 4e that a distance sf=12.0 is sufficiently large
average number of hard spheres whose centers are containg 1 e |ocal fluid structure in the vicinity of one wall is

in a small parallelepiped of volumsg' 5x56z centered at a : .
, X unperturbed by the presence of the opposite (see Fig. 1
point (x,2) and adapted to the wedge geomesge Fig. 1 in ggreement \}//vith dznsity-functional rpezu]r}ﬁ]. ’

In the special case of planar wallg£ ) the local number
density is independent of so that

Ill. RESULTS

(N(2))
Adz '’

1 (s
p(2)=—,f dx p(x,z;m)= (23
S J-s'r2

A. Data smoothing

o ] ] In GCEMC numerical complications arise in the calcula-
where the limits of integration follow from Ed1) and our o of p(x,z; y) via Eq.(22) because for small values of

choice of the coordinate systefsee Fig. 1 The far right- 5.4 close to a wedge comex(=<a) p(x,z;y) varies rap-
hand si-de of Eq(23) gtates explipitly the numgrical recipe idly. This requires a very fine resolutiaix* = 6z* =0.05 of

for a direct computation op(z) in GCEMC simulations, e histogram{see Eq.(22)] in order to resolve details of
where(N(2)) is the average number of hard spheres Whosg,c4) fluid structure in this regime. However, employing such
centers are contained in a thin slice of thlcknésmentergd a fine-meshed grid causes poor statistics even for very long
atz and parallel to théplanaj walls of greaA=s’2. Inthis  GCEMC runs of 5< 10° steps which we have used predomi-
planar limit one has the rigorous relation nantly. These simulations take approximately four days of
CPU time on a DEC Alpha workstation. Statistical accuracy
can be enhanced modestly by averaging the data over the
four geometrically equivalent quadrantsx=0,2=0),
(x<0,2=0), (x=0,z=<0), and k<0,z<0). The remaining
statistical fluctuations are still significant as illustrated for a
representative case in Fig(as, wherep(x,z;y= ) is plot-

ted. The plot demonstrates that statistical fluctuations are
particularly pronounced far away from the walls where the
fluid is less structured. To facilitate an analysis of such noisy
simulation data we apply a least-squares smoothing proce-

BP= lim

Z—Zpa(X;y)+0

p(2) (29)

known as the “wall theorem’[14]. Fromp(z) shown in Fig.
2, for our present system we obtdi =3.972, which agrees
nicely with PEs=4.026 andP* =4.033 following from Eq.
(15). In the thermodynamic limis’ —«~ one has

lim p(x,z;7)=pp., (29

Z—®©
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(a) the statistical noise is eliminated. The density profile is re-
markably robust with respect to further iterations so that
within reasonable limits the precise number of iterations
I max does not matter very much. Data presented below are
typically based orl = 0(10—100). Oncel . has been
reached, smoothing is repeated in the fashion just described
for the next cutAz+ dz=const, until all thej=1,...n,
cuts are processed whargdenotes the number of histogram
entries in thez direction along a linex=const.
To demonstrate the reliability of this procedure, we apply
it to the raw simulation data plotted in Fig(é8. The result-
ing smoothed profile is shown in Fig(t3. For an arbitrary
cutx=const, in Fig. 2 we comparngx=constz; y= ) ob-
tained from Eq.(22) after smoothing withp(z) obtained
from the far right-hand side of E¢23). After 10° GCEMC
steps,p(2) turns out to be fairly smooth. The plots in Fig. 2
also show that p(2) agrees nicely  with
p(x=constz; y=m) especially as far as the contact value,
i.e., the pressurgsee Eq.(24)] is concerned. Heights and
positions of higher-order peakse., peaks at larger distances
from the wal) remain also unaffected by smoothing. Further-
more, at sufficiently large distances from the wall the
smoothed curve attains its limiting valpg within statistical
errors. Therefore, we conclude that smoothing as outlined in
z/s, 0.0 this subsection does not alter physically significant structures
of density profiles, but serves to eliminate irrelevant statisti-
FIG. 3. The number density profife* (x,z; y= ) [see Eq(22)] cal noise from raw GCEMC data conveniently and satisfac-
of a hard-sphere fluid confined by two planar walls at a distanceorily. Thus, in the remainder of this paper, only smoothed

sy =s,0 '=12 (only the lower half of the system is showas a  profiles will be presented and discussed.
function of lateralx/s, and normal positiorz/s, before smoothing
(a) and after smoothingb) (see Sec. Il A.

B. Local-density distribution

dure which removes the statistical noise without affecting The effects of substrate corrugation are conveniently ex-
physically relevant features @f(x,z; y). pressed in terms of the deviation of the local density in a
Since physically relevant variations p{x,z;y) are least wedge of dihedral angle from the corresponding one at a
parallel to the walls it is advantageous to transform variableglanar wall at the same distancg (see Fig. 1 from that
according to X,z) —[X,Az=2z—2z,,(X; y)] prior to smooth-  wall,
ing. By fitting a quadratic polynomial locally to five equally
spaced data poinis,= p(x,,Az=consty), it can be shown Ap(x,AZ;y):=p(X,AZ;y) —p(X,Z;y=m).  (28)
[37] that the value of the polynomial at the midpoint corre-
sponds to a “smoothed” value gi(x,Az;y) at this point.  Thjs is shown in Fig. 4 for four selected dihedral angjes
This value is obtained from the so-called normal equationgyy reasons of clarity the original variablesandz are used
which lead to an expressidi7] in these plots. Foty=8/9 the substrate is almost planar, so
M- 2 (A A@N-1 k=1 that Ap vanishes nearly everywhere except in the close vi-
Pk Pk 3 k=2 BRRRLS cinity of corner (x|/s,<1) and tips (x|/s,=0.5) of the

(26) wedge[see Fig. 4a)]. Inspection of Fig. 4) reveals that
wheren, is the number of histogram entries in tkedirec- Ap>0 in the corner whileAp<<0 at the tip. The positive
tion, and the superscript=1, . . . | . labels the smoothing deviation indicates that the two walls forming the wedge
cycle which is carried out iterativell,,, times (see below. ~ Squeeze the hard spheres into the corner; this effect is more
The quantity pronounced for smaller values of. Around a tip, on the

other hand, the hard spheres are spatially less constrained, so

@11 1 0 0 0 0 0 that the fluid is more disordered as in the corresponding pla-
Ay ::(AX)A(Pk—2_4Pk—1+6Pk —4ppiit ki nar case, so thatp<0.
(27) Figure 4b) demonstrates the onset of a modulation of

Ap(x,z;vy) along the line of fluid-wall contact which extends
corresponds to the fourth derivative ofx,z; y) at the point  slightly into fluid regions further removed from the wall. At
X, and for thelth smoothing cycle. At the boundaries we planar walls, lateral density oscillations occur only at high
employ the periodicity of the system and setbulk densities on account of surface-induced freeZi3@j.

H‘ll: [2'_1], p[_'1”=p5"”, p[_'§1]=p£1'_1], and  Because of its corrugation the present substrate facilitates
p[_'§”=p[5'_”. In practice one observes that changes sig- lateral packing effects at values gf corresponding to con-

nificantly only during first few iterations, in which most of siderably lower densities. These lateral oscillations decay
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(b)

FIG. 4. The deviatiom\ p* of the local density in a wedge of dihedral angle87/9 (a), y=7#/9 (b), y=2#/3 (c), and y= /2 (d)
from the corresponding local density near a planar hard jgakk Eq.(28)]. The solid line on the bottom of the box indicates the line of
fluid-wall contact,— z,4(X,y) [see Eq(8)], and the dashed line represents the bisector of the dihedral angle. Because of the symmetry of
the system data are shown only for one quadrant8/8,<0.5,—z,.(X,y) <2/s,<0.0, for which the plané\p=0 is also indicated.

upon moving away from the corner of the wedge toward itsinferred from Fig. 4d), where oscillations inAp(x,z;y)

tip. In the vicinity of the tip the amplitude of the oscillations along the linex/s,=0 extend further into the fluid than along
in Ap(x,z;7y) increases again. Thus at=77/9, and for the lines|x|/s,=0.5. Along the former lineAp(X,z;y) exhibits
present system siz =9.397, both structural elemeniise.,  three distinct maxima, whereas there are two at most along
corner and tip give rise to localized lateral ordering without the latter.

strong interference. Therefore, this case resembles closely Interference of structural order in corner and tip regions
the behavior of a fluid in a single wedge or at a single tip.can be visualized by introducing

For smaller dihedral anglefy=2=/3 in Fig. 4c) and

y=/2 in Fig. 4d)], packing effects induced by corner and Apmay):=maxAp(x,z; )], (29

tip merge, so that the oscillations inp(x,z;y) at the fluid- e

waI_I contact pers_ist from corner to tip and can no longer b&yhich permits one to define a set of poirtsaccording to
attributed unambiguously to one or the other as in Fib).4

For smaller dihedral angles the lateral extension of packing  S={(x,z) e R?| |Ap(X,z;7)|=0.1Appad 7/2)}. (30)
effects increases together with their amplitude. Both effects

lead to more pronounced positive deviatidns(x,z;y) (i.e.,  This set is plotted in Fig. 5 for dihedral angles=8/9,
“squeezing”) in the corner region. Increasingly negative de- 77/9, 27/3, andw/2 considered in Fig. 4. The size of the set
viations Ap(x,z;y) in the tip regime, on the other hand, indicates the extent to which substrate corrugation modifies
reflect the more disordered character of the fluid as the tiphe local density significantly compared with a planar sub-
sharpens with decreasing That the effect of “squeezing” strate. The sef also allows one to visualize regions where
in the corner is stronger than the impact of the tip can behe strongest modifications gf(x,z;y) are localized. The
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-3 -3
v =8r/9 v =2m/3

-4 ] 4l

5t 1 -5

N \@/K N

-6t 1 -6

-7 (a) -7

-8 -8

-3 -3
y=1r/9
-4 -4
-57r -5
*N *N
-6 -6
-7 (b) =7
-8 r -8
0 1 2 3 4 5 0 1 2 3 4 5
x* x*

FIG. 5. The set of point§ (¢ ) defined in Eqs(29) and(30) for the same dihedral angles as in Fig. 4. The solid line indicates the line
of fluid-wall contact. Within the sef the deviation of the local density from its planar counterpart is larger than 10% of the maximum
deviation fory= /2.

sequence of plots in Fig. 5 shows that for sufficiently largequite shallow in the tip regime.
values ofy these spatial regions are isolated and located in The plot in Fig. 6a) also reveals a peculiar arrangement
the neighborhood of corner and tip. As decreases, both of hard spheres in the corner of the wedge caused by its
portions ofS grow in size until they merge. Regions off the tightness. The most favorable configuration is depicted in the
wedge wall eventually become a part$ftoo. One should inset of Fig. %a). One sphere is located in the corner of the
keep in mind, however, that because of the absence of attragedge in contact with its two sides. The next three spheres
tive interactions the sef summarizes the purely geometric are in contact with the first such that the centers of all four
and entropic effects of confining fluids to corners and tips. spheres form a square in the,£) plane whose sides are
Even though the plots in Fig. 5 demonstrate that forparallel to the walls of the wedge. Employing the same co-
smaller values ofy deviations of the local density from that ordinate system as in Fig. 1, the nearest neighbor of the
in front of a planar wall become more important, isodensitylowest sphere in the corner along the lix€¢=0 is then
lines remain remarkably parallel to the walls. This can beseparated from the latter by a distanke* = V2. These con-
seen in Fig. 6, where the positions of successive extrema ¢fiderations lead to the expectation that successive maxima in
p(x,z;v) are plotted. Lines connect pointx,£) pertaining the cutp(x=0,z; y= w/2) are separated hyz* =+/2. This is
to the location of the same extremum relative to the one atonfirmed by the plot in Fig.®). The shift in position of the
fluid-wall contact; along these lines the values of the extremdirst minimum to smaller values ofz along the line
vary as functions ok. However, alignment of the extrema x*=0.5, as shown by Fig.(6), can also be apprehended by
with the wall is not perfect, which is particularly evident the arrangement of spheres described above, and is reflected
from Fig. 6a) referring toy=w/2. The region over which directly in the plot of the cup(x* =0.36z; w/2) in Fig. 7,
thenth extrema appear along a line nearly parallel to the wallwhich shows that successive maxima along the line
is shorter if that extremum is further removed from the wall.x* =0.36 are not separated kyz*=1.0 as in the case of
In the vicinity of a tip(i.e., |x*|—3.5) the regular spacing planar walls because of the peculiar square packing in the
between successive extrema breaks down reflecting the loggedge corner described above. It is also interesting to note
of order in the fluid caused by the sharpness of the tip. Anthat the second maximum ip(x* =0.36z; 7w/2) is smaller
other indicator of disorder near a tip is the lack of localiza-than all other maxima, and even smaller than the bulk den-
tion of higher-order extrema. In particular, the line connect-sity which is approached for sufficiently large valueszof
ing locations of the third maxima appears to be quite If, on the other hand, the wedge is less tight and the tip at
dislocalized for|x*|=2, because these maxima are already|x|/s,=0.5 is less sharp, the fluid is appreciably more regu-
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2.5 | x* = 0.36
2.0} v=7/2

FIG. 7. A cut through the density distributign(x,z; y) along
the linex* =0.36 as a function of* for y=#/2. The horizontal
line represents the bulk densipyf =0.7016, and the vertical line
indicates the position of the point of fluid-wall contact.

point at which the fluid is in contact with the wall along the
line x*=0. In the corresponding plot in Fig.(&, this sec-
ond maximum ofp(X,z; y= w/2) is represented by a density
“island” centered atx* =0, and surrounded by a line along
S (S — which p* (x,z; y= w/2)=1.0. That this line encloses second
-5-4-3-2-10 1 2 3 4 5 maxima ofp(X,z; y= /2) is inferred from the same distance
x* Az*= /2 from the point of fluid-wall contact at which the
island in the plot of Fig. &) arises. The contour plot also
selcted dihedral angles—m/2 (@) and y=2/3 (b) (0): first shows that the first minimum cent_eredxit.:O and repre-
minimum; (+): second maximum;X): second minimum; [(J): sented by a cl_osed line along V\_/h|¢ﬁ(x,_z,7r/2)=0.1 ap-
third maximum. Lines are intended to guide the eye. The lowesP€ars halfway in between the point of fluid-wall con.tact, and
straight lines indicate the position of the line of fluid-wall contact the the S?COUd maximum as eXp_eCted for geometric reasons.
—2Z,(x;7) where the first maximum is attained. The inset@ N thex_ o_hrectlon the second maxima appear to be_framed by
gives the most probable configuration of hard spheres in the corndW0 minima separated from the former by a distance of
of the wedge; the positions of the centers of the spheres in thidx*=0.5, which supports the configuration depicted in the
configuration are in accordance with positions of extrema ofinset of Fig. &a).
p(x,z;v) (see also Fig. ) In the inset the line of fluid-wall contact However, as can be seen from FigbB for y=2=/3
is also indicated. typical configurations in the wedge are distinct from the one
displayed in Fig. 6). The two minima framing the second
larly ordered, as one infers from the plot in Figbg which  maxima in Fig. 8a) are missing, and the isodensity lines are
shows that fory=27/3 the line connecting positions of the nearly parallel to the wall over a range &%* <3.5, i.e.,
second minima stays nearly parallel to the wall over a muctaway from the close vicinity of tip or corner. The influence
larger range compared with its counterpart for /2 dis-  of the tip on hard-sphere packing results in the tendency of
cussed above. The more ordered structure of the fluid in thgodensity lines to become more parallel to theaxis as
vicinity of the tip (x*=4.2) is also reflected by the reduced x* — 4.33, indicating a less structured fluid. Because of the
scatter of points representing the locations of the thirdenhanced sharpness of the tipjat 7/2, this trend is more
maxima, which indicates that these extrema are well-definegronounced in Fig. @). The corner, on the other hand,
and localized even though=27/3 is not so much larger causes the fluid to be more ordered, as revealed by the suc-
than 7/2 in Fig. 6a). There is no evidence of a peculiar cession of “islands” along the ling* =0 in Fig. 8b) rep-
structure such as the one displayed in Fig)6so that we resenting successive minima and maxima mX,z;7y),
conclude that packing of hard spheres in a wedge ofvhich extend further into the fluid than along any other line
y=/2 is a geometrically distinguished case. of x=const.

An even more detailed picture of the structure of a hard- Finally, in the special case of planar walls the local den-
sphere fluid in a hard wedge emerges if one displaysity must be independent afas long as there is no surface-
p(X,z;y) in terms of contour plots which are shown in Fig. 8 induced freezing. The contour plot p{x,z; ) in Fig. 8c)
for dihedral anglesy=w/2, 27/3, and . For the smallest shows that the isodensity lines indeed run parallel to the
angley= /2, the plot in Fig. 8a) elucidates structural fea- wall. Disconnected isodensity lines enclosing the second
tures discussed in conjunction with Figas For example, maxima of p(x,z;y=) in the vicinity of z*=4.0 are
from the analysis of Fig. @ a second maximum of caused by statistical noise, and are not a signature of physi-
p(x,z;y=7l2) is expected at a distandez* =2 from the  cally relevant structures.

FIG. 6. Positions of successive extrema gfix,z;y) for two
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bution around thex—y plane. The lower limit of the third
integral is the position of the lower wall of the wedge defined
in Eq. (8). The first integral yields a factor &f for the linear
extension of the system in the direction. For an array of
M parallel grooves the total excess cover&ggis given by
z* Lior=MTI' ().

In the thermodynamic limis’ —co, which also implies
s,— [see Eq(1)], the excess coveradd y) within a unit
cell contains a so-called surface contributlopwhich scales
with the actual area’? of the walls forming the groove and
a so-called line contributiof’;, which scales with the linear
extensions’ in the translationally invarianty direction.
While T'g is solely determined by the density profile
pIX, 2+ zpai(X; y); y=m]=p(2) of a semiinfinite fluid ex-
posed to a flat substrate, the line contribution arises because
of the deviation of the local density caused by corner and tip
from that at a planar substrate. On the basis of Fig. 1, one
finds the following decomposition in the thermodynamic

" limit s’ —oo:
z
[(y)=Ts+T+0[(s")°], (32
with
I's= S’Zfo [p(2) = ppldz (33
and
r= —Zs’cot%J’O Z[p(z) — pp]dz+ TP+ T M (34)
*
z where
rio=2s [ 0% [ py% Fi - | T4% co%) 47
1 1 1 1 1 1 1 1 1 O O
4 -3-2-101 2 3 4 ® _ [0 _~— ~
x* +28’J de - [pip(X,Z;y)—p(2)]dz
0 — X cot(y/2)
FIG. 8. Contour plots ofp(x,z;y) for three selected dihedral (35
anglesy= /2 (a), y=2/3 (b), and y= (c). Numbers and ar-
rows are inserted to identify the various lines of constantand
p* (x,z;v). For reasons of clarity the lines of fluid-wall contact are . .
not shown. Flcornerzzslj dx/f / [Pcome.(X',Z/;)/)—p(z)]dz/-
0 x' cot(y/2)
C. Adsorption (39

Experimentally, the determination of the full local-density |, Eq. (33), s'2 is the area of the walls forming a single
distribution near microstructured substrates is rather Chal'roove anap(z) is the density profile in front of a planar

lenging. As a first step one frequently focuses on a reduc‘5"£ubstrate with fluid-wall contact a= . This implies the
integral description of the inhomogeneous fluid by measurig|ation [(y=m)=T For s'—o the distance

: . X ) s

ing the excess coveradé using, say, volumetric techniques s,=s'sin(y/2) between neighboring tips and the depth

(seg, €.9., Ref[39)). For a single substrate of the. pre_semD=(s’/2)cot(y/2) of the groove become macroscopically
periodic system the relation betwe€&nand the density dis- large. Therefore, in this limip(x,z y) decomposes into a

tribution p(x,Z;) is given by(see Fig. 1 density distribution pg,(X,z;y) around the tip
s'12 0 [0 (x=0,2=0), wherex =x+s,/2 andz=z+s,/2 (see Fig. 1
dyf dx I'me and a density distributiorpeyme(X’,2’;y) in the corner
5 wherex’ =x andz' =z+D +5s,/2. These two density distri-
XdZ p(X,zZ;y)— ppl- (31 butions are separated by the density distributidt) of a
fluid near a flat wall whereZ is the normal distance from the
The prefactor 2 reflects the symmetry of the density distriwall (see Fig. 1 In the present case one has

ron-2| |
—s'/2 —s,/2 —Zyal(X; ) — alsin(y/2)
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Z=7 sin(y/2)+ X cos@/2) and Z=7'sin(y/2) 0.7
—X'cos(/2), respectively. Since in the thermodynamic limit AN
s’ —oo, the neighboring tips as well as a tip and the corner

are macroscopically far apartpg,(x—=,z;y) and
Pcomek X' —,2";y)—p(2). The same behavior is encoun-

tered if bothX andz or x’ andz’ become large simulta-
neously, such that one moves in a direction parallel to the 0.3+
walls of the grooves. This guarantees that the second term ir §_
Eq. (35) as well as Eq(36) are indeed finite. The first term *‘1
in Eqg. (35) takes into account that the density distribution %-

+0(1/5")

E3

SI
o
[

above the tip approaches the density prgji{e) of the pla- "
nar geometry with the argument='z + X cot(y/2) given by o0
the vertical distance of the pointx(z) from the tip at /2 34 .

Z=—X cot(y/2). The integrand of this term vanishesifor

Z are large in any direction. ThereforE{P and T'f°"™" are

indeed line contributions proportional 3. The first term in FIG. 9. (TP +Tcome’)/s* 1 O(1/5'™) as a function of the di-
Eq. (34) represents a third line contribution which arises be-hedral angley which is a measure of the influence of lateral corru-
cause the density profilqs['iqf)z cot(y/2)] and p(Z) are  gation of the walls on adsorptiofsee main tejt The solid line
subtracted in Eqg35) and(36) respectively, instead gf, as  represents a fit to the data point¢ | intended to guide the eye.

in Eg. (31). In the limit y— 7 all three terms in Eq(34)

vanish in accordance with the relatidt{y=m)=1I's. _y and the depttD of the grooveqsee Fig. L Based upon
*For the seemal case of a planar substrate we obtaigscEMC simulations, we studied the variation of structural
I'*(y=m)=I'g =—49.4 from Eq.31), a value which devi- properties of the fluid as functions of over the range
ates only by about 4% frofi* (y=m)=—47.6 obtained in  7/2< < 7: for y=  the substrate is flat. Our main findings
Ref. [40] from a density-functional calculation for the gre the following:
present thermodynamic state. Almost perfect agreement is (1) GCEMC simulations can be carried out successfully
achieved with numbers from both molecular dynani¢$]  and reliably for this confined system characterized exclu-
and scaled particle theory [42] which give  sjyely by hard-core interactiorisee Fig. 2 The pronounced
I'*(y=m)=—49.67[see Fig. 3 in Ref[40]; note that our  statistical fluctuations require the application of a smoothing
definition of I'(y=m) deviates from the one used in Ref. procedure to the Monte Carlo data. Figures 2 and 3 demon-
[40] by a factor ofs’? because of the additional integrations strate the reliability of the smoothing algorithm.
overx andy in Eq.(31)]. The integral in the first term onthe  (2) Corner and tips of wedges have opposite effects on the
right-hand side of Eq(34), yielding the first moment of the packing of fluid molecules in front of the substrate. While
density profile, is also amenable to a density-functional calthe fluid is more ordered in a corner, less order is observed at
culation which gives a value of 0.23-0.25 depending on theips compared with a corresponding planar wall. This differ-
specific version of the density-functional udd@]. From the  ence increases in tighter wedges with sharper (g Fig.
present GCEMC simulations we obtain a value of 0.17. Ing),
view of the fact that the first moment of the density profile  (3) Lateral and normal extension of regions over which
enhances the relative weight of details of the oscillatory decorner and tips affect the packing of fluid molecules depend
cay of the profile Compared with the zeroth moment, we a|SQ)n v. For a given deptlD, specific packing effects close to
regard this as satisfactory agreement. the tip and deep in the corner, respectively, start to interfere
Given the present system siE¢® andI'f°"*'in Egs.(35)  with decreasingy. In the present simulations this interfer-
and (36) cannot be computed independently because of thence sets in foy<2#/3 andD* =2.5 (see Fig. 5.
structural interference of tips and corner discussed in Sec. (4) In the thermodynamic limiD> o, I'(y) decomposes
lIIA. The latter prevents a direct determination of eitherinto a surface contributiofi proportional to the actual sur-
Ptip. OF pcomer HOwever, via Egs. (32—(34) the sum face area of the corrugated substrate and into a line contri-
(CP+Tf")/s’+0O(1/s') can be computed from the den- bution I',(y) proportional to the linear extension of the
sity profiles obtained in GCEMC simulations. Results plottedgrooves in the direction normal to the lateral corrugafeee
in Fig. 9 show that in accordance with its definition in Eq. Egs.(34)—(36)].
(32) the sum vanishes if the substrate is planar. With de- (5) The line contributionl’;(), which vanishes for the
creasingy the sum increases reflecting the growing impor-special case of a planar substrate, increases with decreasing
tance of substrate corrugation on the adsorption of hard, indicating the importance of substrate corrugation for the
spheres in grooves. adsorption of fluids at nonplanar substraieee Fig. 9.
While the line contributionl’; is negative, the surface con-
tribution, which agrees well with previous wofld0-432, is
positive. Althoughl', is subdominant td’, this shows that
We investigated the density distribution in a fluid of hard the corrugation of a substrate weakens the negative net ad-
spheres of diametar exposed to a periodically corrugated, sorption on a flat substrate.
hard substrate which is characterized by its dihedral angle For a single rectangular corner, Nijmeijer and van Leeu-

v

IV. SUMMARY AND DISCUSSION



56 STRUCTURE OF A HARD-SPHERE FLUID IN HARD WEDGES 509

wen [44] derived a sum rule which expresses the integraly direction in which the sytem is translationally invariant.
over the deviation of the density at contact with the walls ofHowever, it would be interesting to resolve the density dis-
the wedge from the corresponding contact value at a flatribution in this direction to test whether the fluid at the
surface in terms of the wall-fluid interfacial tensiof); of a  bottom of the groove starts to exhibit solidlike structures
hard-sphere fluid at a flat hard wadlee Eq.(36)]: which would be signaled by a periodic density variation in
the y direction. However, one should keep in mind that in
spatial dimensiongl=1 and 2 there is no true long-range
order. Nonetheless, iml=2 one expects a Kosterlitz-
(370  Thouless type of phase transition to occur at a specific criti-
_ o cal densityp., so that, for densitiep<p., a phase exists
We tried to check whether our GCEMC data fulfill this exact\yhich is characterized by exponentially decaying correlation

sum rule. First, we found thai(x’,z" =x"; y=/2) exhibits  fynctions, while forp>p,, these correlation functions decay
pronounced oscillations as a functiondffor x’ close to the according to a power law; id=1 there is no phase transi-
center of_ the corner. However, for.the presently ac.cessiblgon up to close packing. However, this expectation has not
system sizes it turned out that the influence of the tip at th‘?/et been established explicitly, either experimentally or by
upper end of the wedge sets in before the asymptotic valugimyiations. What one does find is, thatds:2 finite-size
limy . .poome(X’,2' =X";y=m/2)=p(Z=0) is reached so systems exhibit dquasj-first-order transition to a structure
that the effect of a single corner cannot be isolated withlyasembling very closely a solid phase; only in the thermody-
sufficient precision. To study this interference effect on thengmic limit this solidlike structure is expected to be replaced
above sum rul¢see Eq(36)] we analyzed the integral by a Kosterlitz-Thouless phase. Sincedi 1 the finite ex-
« tension of a system also leads to a slower decay of oscilla-
I(X):f dx’. (38 tions in the pair correlation function, it would be interesting
0 to see whether the one-dimensional grooves of the present
. . substrate enhance the formation of the aforementioned solid-
Within the range 0.&x/s,<0.3,1(x) exhibits a damped os-
cillatory behavior around a value of approximately 0.94.
This number turns out to be rather close to the valu

like structure in aguasitwo-dimensional film near the sub-
strate so that thé&guasj-first-order phase transition occurs at
— Bo0°=1.0 predicted in Ref[36] for the current ther-
modynamic state. For larger values ok, i.e.,

& lower density than the substrate-indu¢gdasifreezing at
0.3<x/s,=<0.5, the oscillations il (x) become more pro-

a flat wall which was observed in Rdf38] only at much
higher densities than the one studied here.

nounced because of the onset of the tip influence. From these

observations we conclude that finite-size effects are more

severe for the local-density distribution than for integral We thank Bernd Gzelmann (Bergische Universita

quantities such as the left-hand side of E2j). This obser- Wuppertal for helpful discussions and for providing unpub-

vation is in line with those for the excess coverdie/) (see lished data. Thomas GruhiTechnische UniversitaBerlin)

Sec. Il O. is acknowledged for preparing the plots presented in this
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p(X,z;y) by averaging the local-density distribution over the chungsgemeinschafbFG) for financial support.
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