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Structure of a hard-sphere fluid in hard wedges
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We investigate local structural properties of a hard-sphere fluid exposed to periodic arrays of parallel hard
wedges by means of grand canonical ensemble Monte Carlo simulations. The corrugated substrate is charac-
terized by the dihedral angleg of the grooves, the angle 2p2g of the tips, and the lateral periodicity length
sx in thex direction;g is varied over the rangep/2<g<p including a planar wall (g5p) as a special case.
In the second lateral directiony periodic boundary conditions are used, whereas confinement in the normal
directionz is accomplished by two opposite substrates sufficiently far apart. We analyze the ordering of the
fluid within the grooves and at the tips, respectively, in terms of the number densityr(x,z;g). The crossover
between these two regions exhibits pronounced density oscillations. From the density distribution we extract
the excess coverageG(g), which up to now has been known only forg5p; in this special case we find
excellent agreement with previous work.G(g) is composed of surface and line contribution whose relative
magnitude permits us to quantify corrugation effects vs planar confinement.@S1063-651X~97!10507-4#

PACS number~s!: 61.20.Ja, 61.20.Ne, 68.45.2v
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I. INTRODUCTION

Confinement of a fluid by container walls imposes spa
inhomogeneities in the fluid. They range from packing
fects close to the walls@1,2#, which cause the local density t
be a strongly oscillatory function of position, to quasimac
scopic effects such as wetting@3–7#. Experimentally these
effects are accessible by scattering of light@8#, x rays, and
neutrons@9,10# as well as by force microscopy@11–14#. In
the vast majority of corresponding theoretical studies,
walls are modeled by substrate potentials which vary only
the direction normal to the surface, but are translationa
invariant in lateral directions. However, even for atomica
flat substrates this is an oversimplification because of
actual atomic corrugation of the substrate.

Unless substrates have been treated with great care,
are typically rough, so that an adjacent fluid is exposed t
geometrically disordered wall. The effect of such disorder
wetting phenomena has been studied experimentally@15–18#
and theoretically @19–22# by coarse-grained approach
which average laterally over the local height variation of t
substrate. Thus an understanding of thelocal microscopic
structure of fluids filling the grooves and covering the tips
such disordered substrates is not yet available.

This dearth of information is aggravated by the fact tha
became possible to prepare substrates which exhibit w
defined geometric structures with lateral periodicity in o
direction. X-ray scattering provides spatially resolved de
sity distributions of fluids in contact with such substrat
@23#. The first steps in understanding the wetting of sin
wedges were made, but they focused on the shape of
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meniscus forming inside the grooves@24#. Therefore, these
studies do not address packing effects occurring in a fl
when its confining walls start to interfere upon approach
the center of a wedge or when they form a tip. Such effe
are important in the context of microfluidity, where one fo
lows the spreading of liquids in artificial grooves@25–27#.
At the surfaces of certain materials grooves may even fo
spontaneously. One may encounter situations in which
nar terraces of molecularly large areas are separated by
of a height of several atomic layers. Such structures can
quite regular even in natural materials. For instance, mine
of the palygorskite and sepiolite group consist of stacks
alternating tetrahedral and octahedral silicate sheets@28#.
The structure and diffusion of ‘‘simple’’ fluids in grooves o
this particular geometry were recently investigated by co
puter simulation methods@29#.

To promote a more detailed understanding of fluid str
tures caused by geometrical confinement, we analyze a h
sphere fluid exposed to a periodic array of wedges. In
model attractive forces between fluid particles and with
substrate are absent, and the repulsive part of the interac
is replaced by hard cores. This permits one to isolate
purely entropic effects of spatial confinements on fluid str
ture. Since short-ranged order in fluids is dominated by pa
ing effects the present results also provide important ins
into the behavior of fluids endowed with more realistic inte
action potentials. Moreover, the hard-sphere fluid repres
a convenient starting point for analytic theories so that
present results provide a benchmark for future dens
functional calculations of such systems. Finally, we wou
like to mention that by suitable choices of wall, solute, a
solvent, the present model of hard spheres in hard groo
can closely resemble a colloidal suspension in which
colloidal particles behave effectively as hard spheres. Th
fore, the results of the present Monte Carlo calculations
499 © 1997 The American Physical Society
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500 56M. SCHOEN AND S. DIETRICH
also accessible to experimental tests.
In Sec. II we present our model and discuss numer

aspects of the simulations. Results are analyzed in Sec
and summarized in Sec. IV.

II. NUMERICAL ASPECTS

A. Monte Carlo simulations in the grand canonical ensemble

In Fig. 1 we sketch our model system consisting of tw
opposing wedges characterized by their dihedral angleg and
the lateral widthsx . Tips at uxu/sx50.5 are separated by
distancesz along thez axis of the coordinate system fixed
the center0. For sufficiently large values ofsz , this system
reduces to two identical, independent interfaces between
fluid and the corrugated substrate separated by the bulk fl
The angleg and the fixed side lengths8/2 determine the
lateral widthsx :

sx
2

5
s8

2
sin~g/2!. ~1!

The system is therefore symmetric with respect tox2y and
z2y planes~cf. Sec. II B!. We employ periodic boundary
conditions@30# in x andy directions at planesx56sx/2 and
y56s8/2. Therefore, the walls of our system represen
sawtooth-shaped, corrugated substrate. The depth of
groove is given byD5(sx/2)cot(g/2), so that in the limit of
largesx one recovers the single-wedge model@24#.

FIG. 1. Side view of the model system consisting of two opp
site hard wedges of side lengths8 and dihedral angleg in the
(x,z) plane. The origin0 of the coordinate system is at the cente
halfway in between the wedges. The corner of the wedge is loc
at x/sx50 and the two tips atx/sx560.5 are separated by a dis
tancesz along thez axis of the coordinate system. Also shown is
point at a distanceZ in a direction normal to a wedge wall. Th
system is periodically extended in thex direction with a unit length
sx . The depth of a wedges is denoted byD.
al
II,

he
id.

a
ch

In order to describe the fluid in this confined geometry
resort to the grand canonical ensemble in which a thermo
namic state is uniquely specified by chemical potentialm,
volumeV, and temperatureT. Because of the spatially inho
mogeneous density distribution, the canonical ensemble w
its specification of the averaged mean density is a less fa
able choice. Ensemble averages^O& of an observableO can
be expressed as@31#

^O&5J21(
N50

`

~L3NN! !21E
VN
drNO~rN!exp@2bU~rN!#

5 (
N50

` E
VN
drNO~rN! f mVT ~2!

in the classical limit. In Eq.~2!, J is the grand canonica
partition function,L is the thermal de Broglie wavelengt
@31#, b:5(kBT)

21 (kB Boltzmann’s constant!, rN is an ab-
breviation for the set ~i.e., the configuration!
$r1 ,r2 , . . . ,rN%, U is the configurational energy, andO(rN)
is a molecular representation of the quantity of interest wh
may depend on additional external variables. In the pres
context we focus on

O~r8,rN!5(
i51

N

d~r i2r8! ~3!

becausêO(r8)&5r(r8) is the local~number! densityr(r8)
of the fluid. In Eq.~3!, d is the Diracd function. In Eq.~2!
we assume that the fluid is composed of spherically symm
ric particles, so that their configuration is uniquely charact
ized by the set of coordinates of their centers.

In order to determiner(r8) we resort to grand canonica
ensemble Monte Carlo~GCEMC! simulations. In GCEMC
the generation of a~numerical representation of! a Markov
chain of configurations proceeds in two consecutive steps
the first step one of theN spheres, sayi , is chosen at random
and displaced slightly within a small cube of side leng
2dmax centered at its original positionr i

[k] ; that is

r i
[ l ]5r i

[k]1dmax~122j!, ~4!

where superscripts refer to original@k# and new trial con-
figurations @ l #, 15(1,1,1), andj is a vector whose three
dimensionless components are pseudorandom numbers
tributed uniformly on the interval@0,1#. The parameter
dmax is adjusted during a run to preserve an overall acc
tance ratio of 40–60 % of all displacement attempts. Fr
the theory of Markov processes@32# it follows that the prob-
ability of acceptance of the transitionk→ l is governed by
the ratio f mVT

[ l ] / f mVT
[k] @see Eq.~2!#, where

f mVT}exp@2b~U2mN!2 lnN!2N ln~L3/V!#. ~5!

SinceN does not vary during the first step, it is easy to ver
that

f mVT
[ l ]

f mVT
[k] 5exp@2bDUk→ l #, ~6!

-

ed
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56 501STRUCTURE OF A HARD-SPHERE FLUID IN HARD WEDGES
whereDUk→ l is the change in configurational energy ass
ciated with the displacement of spherei . Because of the in-
finitely repulsive fluid-fluid pair and substrate potentials, o
has

DUk→ l50 if r i j.s, 1< iÞ j<N and

uzi u<zwall~xi ;g!, 1< i<N, ~7!

where

zwall~x;g!5S sx2 2xD cotS g

2D1
sz
2

2
s

sin~g/2!
, uxu<

sx
2
~8!

is the position of closest contact of the centers of the sph
with the wall, r i j5@(xi2xj )

21(yi2yj )
21(zi2zj )

2#1/2 is
the distance between the centers of any pair of hard sph
ands is the hard-sphere diameter. If the wall is thought of
being composed of fixed hard spheres of the same diam
s, zwall(x;g)1s/sin(g/2) is the position of the centers of th
substrate spheres in the top layer of the substrate; this g
rise to the last term in Eq.~8!. If the displacement of spher
i violates one or both of the two conditions stated in Eq.~7!,
one hasDUk→ l5`. Employing Metropolis’ algorithm@30#
the transitionk→ l is either accepted with probabilityp51
(DUk→ l50) or rejected (p50,DUk→ l5`).

During the second step an attempt is made to alterN by
either adding or removing one hard sphere in an unbia
way; that is, addition and removal are attempted with eq
probability. IfDNk→ l :5N[ l ]2N[k]511, a new hard sphere
is added from a virtual reservoir of matter at a random
determined position inV; if DNk→ l521, an already exist-
ing sphere is chosen at random and subjected to a rem
attempt. Addition and removal are governed by@see Eq.~5!#

f mVT
[ l ]

f mVT
[k] 5exp~r k→ l !, ~9!

where for an addition attempt the argument of the pseu
Boltzmann factor is given by

r k→ l52 lnN[ l ]1B if r i j.s, 1< iÞ j<N

and uzi u<zwall~x;g!, 1< i<N ~10!

becauseU [ l ]50 under these conditions; if one or both
these conditions are violatedU [ l ]5` andr k→ l52` so that
addition is rejected without further ado. For a removal
tempt,

r k→ l5 lnN[k]2B, ~11!

becauseU [k]50 in any event~i.e., U [k] vanishesby defini-
tion for each of theN hard spheres inall configurations of
the Markov chain!. The quantityB in Eqs. ~10! and ~11!,
which is a dimensionless number, is related to the chem
potential via

B5bm2 ln~L3/V!5C1 ln~V/s3!. ~12!

Its introduction is convenient from a purely technical pe
spective of the simulations as demonstrated by Adams@33#.
In the same spirit we introduce the dimensionless num
-
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C which is fixed throughout this paper~see Sec. II B below!.
Both addition ~for configurations characterized by a fini
r k→ l , i.e.,U

[ l ]50) and removal attempts are accepted w
probability

p5min@1,exp~r k→ l !# ~13!

by comparing the pseudo-Boltzmann factor with a rand
numberj uniformly distributed on the interval@1,0# @30#.

B. Reliability of the computational scheme

The GCEMC algorithm just described was subjected t
number of consistency checks. Throughout this paper we
cus exclusively on a thermodynamic state characterized
C57.056@see Eq.~12!#, corresponding to an average dens
of a hard-sphere bulk fluid ofrbs

3:5rb*50.7016 obtained
from GCEMC simulations. Because of the simple form
the interaction potential, some properties of the hard-sph
fluid are amenable to approximate analytic analyses. For
ample, the Carnahan-Starling~CS! equation of state@34# ex-
presses the pressurePCS in a bulk hard-sphere fluid

bPCS

rb
5
11h1h22h3

~12h!3
~14!

in terms of the hard-sphere packing fractionh:5prb* /6, so
that bPCS/s

35PCS* 54.026 for the present choice. Furthe
more, the pressure of a bulk hard-sphere fluid is related to
contact value of its radial pair correlation functiong(r ) via
@31#

bP

rb
511

2p

3
rbs

3 lim
r→s1

g~r !. ~15!

It can be determined in GCEMC simulations from the re
tion

g~r !5
^N~r !&

4p r̄ br
2Dr

, ~16!

which is normalized such thatg(r→`)51. In Eq. ~16!,
^N(r )& denotes the average number of hard spheres loc
in a spherical shell of thicknessDr separated from a refer
ence sphere at the origin by a distancer . The overbar is used
to emphasize thatr̄ b in the denominator of Eq.~16! is aver-
aged over the Markov chain generated according to S
II A. Averages involve a few thousand statistically uncorr
lated configurations in which each sphere serves as a re
ence. For the present value ofC we obtain a contact value
g(s1)53.2315. According to Eq. ~15! this yields
P*54.033, in very good agreement withPCS* 54.026.

An additional check is provided by decomposing the fr
energy of the hard-sphere fluid into two terms,

F5F id1Fex, ~17!

where the ideal-gas part is given by@35#

bF id

N
5 ln~rbs

3!13ln~L/s!21 ~18!
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502 56M. SCHOEN AND S. DIETRICH
and the excess part by@35#

bFex

N
5E

0

hFbPCS~h8!

rb
21Gd lnh85

h~423h!

~12h!2
. ~19!

Equations~17!–~19! together with the thermodynamic rela
tion

m5S ]F

]ND
T,V

~20!

allow one to expressm in terms of the hard-sphere packin
fraction

m5m id1mex,

bm id5 ln~rbs
3!13 ln~L/s!, ~21!

bmex5
8h29h213h3

~12h!3
.

For our present choice ofC57.056@see Eq.~12!# we obtain
rb*50.7016 from GCEMC simulations, so tha
C2 lnrb*5bmex57.410, in excellent agreement wit
bmex57.397 calculated directly from the third expression
Eq. ~21! for the same density.

After passing these consistency checks in the bulk
now turn to the local number density

r~x,z;g!:5
^N~x,z;g!&
s8dxdz

~22!

describing the microscopic fluid structure in the geome
shown in Fig. 1. For a given configuration,^N(x,z;g)& is the
average number of hard spheres whose centers are cont
in a small parallelepiped of volumes8dxdz centered at a
point (x,z) and adapted to the wedge geometry~see Fig. 1!.
In the special case of planar walls (g5p) the local number
density is independent ofx so that

r~z!5
1

s8
E

2s8/2

s8/2
dx r~x,z;p!5

^N~z!&
Adz

, ~23!

where the limits of integration follow from Eq.~1! and our
choice of the coordinate system~see Fig. 1!. The far right-
hand side of Eq.~23! states explicitly the numerical recip
for a direct computation ofr(z) in GCEMC simulations,
where^N(z)& is the average number of hard spheres wh
centers are contained in a thin slice of thicknessdz centered
at z and parallel to the~planar! walls of areaA5s82. In this
planar limit one has the rigorous relation

bP5 lim
z→zwall~x;g!10

r~z! ~24!

known as the ‘‘wall theorem’’@14#. Fromr(z) shown in Fig.
2, for our present system we obtainP*53.972, which agrees
nicely with PCS* 54.026 andP*54.033 following from Eq.
~15!. In the thermodynamic limits8→` one has

lim
z→`

r~x,z;g!5rb , ~25!
e

y

ned

e

irrespective ofx andg. The plot in Fig. 2 shows agreemen
with this relation within numerical accuracy for the spec
caseg5p ~for other anglesg, see below!, sz*512.0 and
s8*510.0 for which all the results below are obtained. Th
we conclude that a distance ofsz*512.0 is sufficiently large
so that the local fluid structure in the vicinity of one wall
unperturbed by the presence of the opposite one~see Fig. 1!
in agreement with density-functional results@36#.

III. RESULTS

A. Data smoothing

In GCEMC numerical complications arise in the calcu
tion of r(x,z;g) via Eq. ~22! because for small values ofg
and close to a wedge corner (uxu&s) r(x,z;g) varies rap-
idly. This requires a very fine resolutiondx*5dz*50.05 of
the histogram@see Eq.~22!# in order to resolve details o
local fluid structure in this regime. However, employing su
a fine-meshed grid causes poor statistics even for very l
GCEMC runs of 53108 steps which we have used predom
nantly. These simulations take approximately four days
CPU time on a DEC Alpha workstation. Statistical accura
can be enhanced modestly by averaging the data over
four geometrically equivalent quadrants (x>0,z>0),
(x<0,z>0), (x>0,z<0), and (x<0,z<0). The remaining
statistical fluctuations are still significant as illustrated for
representative case in Fig. 3~a!, wherer(x,z;g5p) is plot-
ted. The plot demonstrates that statistical fluctuations
particularly pronounced far away from the walls where t
fluid is less structured. To facilitate an analysis of such no
simulation data we apply a least-squares smoothing pro

FIG. 2. The local number densityr* (z)5r(z)s3 @see Eq.~23!#
of a hard-sphere fluid confined by two planar walls~in view of the
symmetry of the system data are presented only for the lower
of the systemz/sz<0.0; see Fig. 1! as a function of the norma
distancez*5zs21 (L) for sz*5szs

21512. The positions of the
nuclei of the top layer of the lower substrate is given byz*526 so
that forz*,25 ~indicated by the vertical line! r* (z)50. Extrapo-
lation of r* (z) to z*→25 yields the value 3.972. For compariso
we also show a cutr(x5const,z;p) @see Eq.~22!# along an arbi-
trarily selected linex*54.075 after the corresponding density pr
file was smoothed appropriately~see Sec. III A! (1). The horizon-
tal line indicates the bulk densityrb*50.7016.
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56 503STRUCTURE OF A HARD-SPHERE FLUID IN HARD WEDGES
dure which removes the statistical noise without affect
physically relevant features ofr(x,z;g).

Since physically relevant variations ofr(x,z;g) are least
parallel to the walls it is advantageous to transform variab
according to (x,z)→@x,Dz5z2zwall(x;g)# prior to smooth-
ing. By fitting a quadratic polynomial locally to five equall
spaced data pointsrk5r(xk ,Dz5const;g), it can be shown
@37# that the value of the polynomial at the midpoint corr
sponds to a ‘‘smoothed’’ value ofr(x,Dz;g) at this point.
This value is obtained from the so-called normal equati
which lead to an expression@37#

rk
[ l ]5rk

[ l21]2 3
35 ~Dx!4Dk22

~4!,[ l21] , k51, . . . ,nx ,
~26!

wherenx is the number of histogram entries in thex direc-
tion, and the superscriptl51, . . . ,lmax labels the smoothing
cycle which is carried out iterativelylmax times ~see below!.
The quantity

Dk
~4!,[ l ] :5

1

~Dx!4
~rk22

[ l ] 24rk21
[ l ] 16rk

[ l ]24rk11
[ l ] 1rk12

[ l ] !

~27!

corresponds to the fourth derivative ofr(x,z;g) at the point
xk and for thel th smoothing cycle. At the boundaries w
employ the periodicity of the system and s
r0
[ l21]5r2

[ l21] , r21
[ l21]5r3

[ l21] , r22
[ l21]5r4

[ l21] , and
r23
[ l21]5r5

[ l21] . In practice one observes thatrk changes sig-
nificantly only during first few iterations, in which most o

FIG. 3. The number density profiler* (x,z;g5p) @see Eq.~22!#
of a hard-sphere fluid confined by two planar walls at a dista
sz*5szs

21512 ~only the lower half of the system is shown! as a
function of lateralx/sx and normal positionz/sz before smoothing
~a! and after smoothing~b! ~see Sec. III A!.
g

s

s

the statistical noise is eliminated. The density profile is
markably robust with respect to further iterations so th
within reasonable limits the precise number of iteratio
lmax does not matter very much. Data presented below
typically based onlmax5O(102100). Oncelmax has been
reached, smoothing is repeated in the fashion just descr
for the next cutDz1dz5const, until all thej51, . . . ,nz
cuts are processed wherenz denotes the number of histogra
entries in thez direction along a linex5const.

To demonstrate the reliability of this procedure, we app
it to the raw simulation data plotted in Fig. 3~a!. The result-
ing smoothed profile is shown in Fig. 3~b!. For an arbitrary
cut x5const, in Fig. 2 we comparer(x5const,z;g5p) ob-
tained from Eq.~22! after smoothing withr(z) obtained
from the far right-hand side of Eq.~23!. After 108 GCEMC
steps,r(z) turns out to be fairly smooth. The plots in Fig.
also show that r(z) agrees nicely with
r(x5const,z;g5p) especially as far as the contact valu
i.e., the pressure@see Eq.~24!# is concerned. Heights an
positions of higher-order peaks~i.e., peaks at larger distance
from the wall! remain also unaffected by smoothing. Furthe
more, at sufficiently large distances from the wall t
smoothed curve attains its limiting valuerb within statistical
errors. Therefore, we conclude that smoothing as outline
this subsection does not alter physically significant structu
of density profiles, but serves to eliminate irrelevant stati
cal noise from raw GCEMC data conveniently and satisf
torily. Thus, in the remainder of this paper, only smooth
profiles will be presented and discussed.

B. Local-density distribution

The effects of substrate corrugation are conveniently
pressed in terms of the deviation of the local density in
wedge of dihedral angleg from the corresponding one at
planar wall at the same distanceZ ~see Fig. 1! from that
wall,

Dr~x,Dz;g!:5r~x,Dz;g!2r~x,Z;g5p!. ~28!

This is shown in Fig. 4 for four selected dihedral anglesg;
for reasons of clarity the original variablesx andz are used
in these plots. Forg58p/9 the substrate is almost planar, s
that Dr vanishes nearly everywhere except in the close
cinity of corner (uxu/sx!1) and tips (uxu/sx.0.5) of the
wedge @see Fig. 4~a!#. Inspection of Fig. 4~a! reveals that
Dr.0 in the corner whileDr,0 at the tip. The positive
deviation indicates that the two walls forming the wed
squeeze the hard spheres into the corner; this effect is m
pronounced for smaller values ofg. Around a tip, on the
other hand, the hard spheres are spatially less constraine
that the fluid is more disordered as in the corresponding
nar case, so thatDr,0.

Figure 4~b! demonstrates the onset of a modulation
Dr(x,z;g) along the line of fluid-wall contact which extend
slightly into fluid regions further removed from the wall. A
planar walls, lateral density oscillations occur only at hi
bulk densities on account of surface-induced freezing@38#.
Because of its corrugation the present substrate facilit
lateral packing effects at values ofm corresponding to con-
siderably lower densities. These lateral oscillations de

e
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FIG. 4. The deviationDr* of the local density in a wedge of dihedral angleg58p/9 ~a!, g57p/9 ~b!, g52p/3 ~c!, andg5p/2 ~d!
from the corresponding local density near a planar hard wall@see Eq.~28!#. The solid line on the bottom of the box indicates the line
fluid-wall contact,2zwall(x,g) @see Eq.~8!#, and the dashed line represents the bisector of the dihedral angle. Because of the symm
the system data are shown only for one quadrant 0.0<x/sx<0.5,2zwall(x,g)<z/sz<0.0, for which the planeDr50 is also indicated.
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upon moving away from the corner of the wedge toward
tip. In the vicinity of the tip the amplitude of the oscillation
in Dr(x,z;g) increases again. Thus atg57p/9, and for the
present system sizesx*59.397, both structural elements~i.e.,
corner and tip! give rise to localized lateral ordering withou
strong interference. Therefore, this case resembles clo
the behavior of a fluid in a single wedge or at a single t
For smaller dihedral angles@g52p/3 in Fig. 4~c! and
g5p/2 in Fig. 4~d!#, packing effects induced by corner an
tip merge, so that the oscillations inDr(x,z;g) at the fluid-
wall contact persist from corner to tip and can no longer
attributed unambiguously to one or the other as in Fig. 4~b!.
For smaller dihedral angles the lateral extension of pack
effects increases together with their amplitude. Both effe
lead to more pronounced positive deviationsDr(x,z;g) ~i.e.,
‘‘squeezing’’! in the corner region. Increasingly negative d
viations Dr(x,z;g) in the tip regime, on the other hand
reflect the more disordered character of the fluid as the
sharpens with decreasingg. That the effect of ‘‘squeezing’’
in the corner is stronger than the impact of the tip can
s

ly
.
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inferred from Fig. 4~d!, where oscillations inDr(x,z;g)
along the linex/sx50 extend further into the fluid than alon
lines uxu/sx50.5. Along the former line,Dr(x,z;g) exhibits
three distinct maxima, whereas there are two at most al
the latter.

Interference of structural order in corner and tip regio
can be visualized by introducing

Drmax~g!:5max
x,z

uDr~x,z;g!u, ~29!

which permits one to define a set of pointsS according to

S5$~x,z!PR2u uDr~x,z;g!u>0.1Drmax~p/2!%. ~30!

This set is plotted in Fig. 5 for dihedral anglesg58p/9,
7p/9, 2p/3, andp/2 considered in Fig. 4. The size of the s
indicates the extent to which substrate corrugation modi
the local density significantly compared with a planar su
strate. The setS also allows one to visualize regions whe
the strongest modifications ofr(x,z;g) are localized. The
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FIG. 5. The set of pointsS (L) defined in Eqs.~29! and~30! for the same dihedral angles as in Fig. 4. The solid line indicates the
of fluid-wall contact. Within the setS the deviation of the local density from its planar counterpart is larger than 10% of the maxi
deviation forg5p/2.
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sequence of plots in Fig. 5 shows that for sufficiently lar
values ofg these spatial regions are isolated and located
the neighborhood of corner and tip. Asg decreases, both
portions ofS grow in size until they merge. Regions off th
wedge wall eventually become a part ofS, too. One should
keep in mind, however, that because of the absence of at
tive interactions the setS summarizes the purely geometr
and entropic effects of confining fluids to corners and tip

Even though the plots in Fig. 5 demonstrate that
smaller values ofg deviations of the local density from tha
in front of a planar wall become more important, isodens
lines remain remarkably parallel to the walls. This can
seen in Fig. 6, where the positions of successive extrem
r(x,z;g) are plotted. Lines connect points (x,z) pertaining
to the location of the same extremum relative to the one
fluid-wall contact; along these lines the values of the extre
vary as functions ofx. However, alignment of the extrem
with the wall is not perfect, which is particularly eviden
from Fig. 6~a! referring tog5p/2. The region over which
thenth extrema appear along a line nearly parallel to the w
is shorter if that extremum is further removed from the wa
In the vicinity of a tip ~i.e., ux* u→3.5) the regular spacing
between successive extrema breaks down reflecting the
of order in the fluid caused by the sharpness of the tip. A
other indicator of disorder near a tip is the lack of localiz
tion of higher-order extrema. In particular, the line conne
ing locations of the third maxima appears to be qu
dislocalized forux* u>2, because these maxima are alrea
e
in
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quite shallow in the tip regime.
The plot in Fig. 6~a! also reveals a peculiar arrangeme

of hard spheres in the corner of the wedge caused by
tightness. The most favorable configuration is depicted in
inset of Fig. 6~a!. One sphere is located in the corner of t
wedge in contact with its two sides. The next three sphe
are in contact with the first such that the centers of all fo
spheres form a square in the (x,z) plane whose sides ar
parallel to the walls of the wedge. Employing the same
ordinate system as in Fig. 1, the nearest neighbor of
lowest sphere in the corner along the linex*50 is then
separated from the latter by a distanceDz*5A2. These con-
siderations lead to the expectation that successive maxim
the cutr(x50,z;g5p/2) are separated byDz*.A2. This is
confirmed by the plot in Fig. 6~a!. The shift in position of the
first minimum to smaller values ofz along the line
x*.0.5, as shown by Fig. 6~a!, can also be apprehended b
the arrangement of spheres described above, and is refle
directly in the plot of the cutr(x*50.36,z;p/2) in Fig. 7,
which shows that successive maxima along the l
x*50.36 are not separated byDz*.1.0 as in the case o
planar walls because of the peculiar square packing in
wedge corner described above. It is also interesting to n
that the second maximum inr(x*50.36,z;p/2) is smaller
than all other maxima, and even smaller than the bulk d
sity which is approached for sufficiently large values ofz.

If, on the other hand, the wedge is less tight and the tip
uxu/sx50.5 is less sharp, the fluid is appreciably more reg
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larly ordered, as one infers from the plot in Fig. 6~b!, which
shows that forg52p/3 the line connecting positions of th
second minima stays nearly parallel to the wall over a m
larger range compared with its counterpart forg5p/2 dis-
cussed above. The more ordered structure of the fluid in
vicinity of the tip (x*.4.2) is also reflected by the reduce
scatter of points representing the locations of the th
maxima, which indicates that these extrema are well-defi
and localized even thoughg52p/3 is not so much large
than p/2 in Fig. 6~a!. There is no evidence of a peculia
structure such as the one displayed in Fig. 6~a!, so that we
conclude that packing of hard spheres in a wedge
g5p/2 is a geometrically distinguished case.

An even more detailed picture of the structure of a ha
sphere fluid in a hard wedge emerges if one displ
r(x,z;g) in terms of contour plots which are shown in Fig.
for dihedral anglesg5p/2, 2p/3, andp. For the smallest
angleg5p/2, the plot in Fig. 8~a! elucidates structural fea
tures discussed in conjunction with Fig. 6~a!. For example,
from the analysis of Fig. 6~a! a second maximum o
r(x,z;g5p/2) is expected at a distanceDz*.A2 from the

FIG. 6. Positions of successive extrema ofr(x,z;g) for two
selcted dihedral anglesg5p/2 ~a! and g52p/3 ~b!; (L): first
minimum; (1): second maximum; (X): second minimum; (h):
third maximum. Lines are intended to guide the eye. The low
straight lines indicate the position of the line of fluid-wall conta
2zwall(x;g) where the first maximum is attained. The inset in~a!
gives the most probable configuration of hard spheres in the co
of the wedge; the positions of the centers of the spheres in
configuration are in accordance with positions of extrema
r(x,z;g) ~see also Fig. 7!. In the inset the line of fluid-wall contac
is also indicated.
h

e

d
d

f

-
s

point at which the fluid is in contact with the wall along th
line x*50. In the corresponding plot in Fig. 8~a!, this sec-
ond maximum ofr(x,z;g5p/2) is represented by a densit
‘‘island’’ centered atx*50, and surrounded by a line alon
which r* (x,z;g5p/2)51.0. That this line encloses secon
maxima ofr(x,z;g5p/2) is inferred from the same distanc
Dz*.A2 from the point of fluid-wall contact at which th
island in the plot of Fig. 8~a! arises. The contour plot als
shows that the first minimum centered atx*50 and repre-
sented by a closed line along whichr* (x,z;p/2)50.1 ap-
pears halfway in between the point of fluid-wall contact, a
the the second maximum as expected for geometric reas
In thex direction the second maxima appear to be framed
two minima separated from the former by a distance
Dx*.0.5, which supports the configuration depicted in t
inset of Fig. 6~a!.

However, as can be seen from Fig. 8~b!, for g52p/3
typical configurations in the wedge are distinct from the o
displayed in Fig. 6~a!. The two minima framing the secon
maxima in Fig. 8~a! are missing, and the isodensity lines a
nearly parallel to the wall over a range 0.5,x*<3.5, i.e.,
away from the close vicinity of tip or corner. The influenc
of the tip on hard-sphere packing results in the tendency
isodensity lines to become more parallel to thex axis as
x*→4.33, indicating a less structured fluid. Because of
enhanced sharpness of the tip atg5p/2, this trend is more
pronounced in Fig. 8~a!. The corner, on the other hand
causes the fluid to be more ordered, as revealed by the
cession of ‘‘islands’’ along the linex*.0 in Fig. 8~b! rep-
resenting successive minima and maxima ofr(x,z;g),
which extend further into the fluid than along any other li
of x5const.

Finally, in the special case of planar walls the local de
sity must be independent ofx as long as there is no surface
induced freezing. The contour plot ofr(x,z;p) in Fig. 8~c!
shows that the isodensity lines indeed run parallel to
wall. Disconnected isodensity lines enclosing the seco
maxima of r(x,z;g5p) in the vicinity of z*.4.0 are
caused by statistical noise, and are not a signature of ph
cally relevant structures.

st

er
is
f

FIG. 7. A cut through the density distributionr(x,z;g) along
the line x*50.36 as a function ofz* for g5p/2. The horizontal
line represents the bulk densityrb*50.7016, and the vertical line
indicates the position of the point of fluid-wall contact.
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C. Adsorption

Experimentally, the determination of the full local-dens
distribution near microstructured substrates is rather c
lenging. As a first step one frequently focuses on a redu
integral description of the inhomogeneous fluid by meas
ing the excess coverageG using, say, volumetric technique
~see, e.g., Ref.@39#!. For a single substrate of the prese
periodic system the relation betweenG and the density dis-
tribution r(x,z;g) is given by~see Fig. 1!

G~g!52E
2s8/2

s8/2
dyE

2sx/2

0

dx lim
sz→`

E
2zwall~x;g!2s/sin~g/2!

0

3dz@r~x,z;g!2rb#. ~31!

The prefactor 2 reflects the symmetry of the density dis

FIG. 8. Contour plots ofr(x,z;g) for three selected dihedra
anglesg5p/2 ~a!, g52p/3 ~b!, andg5p ~c!. Numbers and ar-
rows are inserted to identify the various lines of const
r* (x,z;g). For reasons of clarity the lines of fluid-wall contact a
not shown.
l-
d,
r-

t

i-

bution around thex2y plane. The lower limit of the third
integral is the position of the lower wall of the wedge defin
in Eq. ~8!. The first integral yields a factor ofs8 for the linear
extension of the system in they direction. For an array of
M parallel grooves the total excess coverageG tot is given by
G tot5MG(g).

In the thermodynamic limits8→`, which also implies
sx→` @see Eq.~1!#, the excess coverageG(g) within a unit
cell contains a so-called surface contributionGs which scales
with the actual areas82 of the walls forming the groove and
a so-called line contributionG l which scales with the linea
extension s8 in the translationally invarianty direction.
While Gs is solely determined by the density profi
r@x,z1zwall(x;g);g5p#[r(z) of a semiinfinite fluid ex-
posed to a flat substrate, the line contribution arises beca
of the deviation of the local density caused by corner and
from that at a planar substrate. On the basis of Fig. 1,
finds the following decomposition in the thermodynam
limit s8→`:

G~g!5Gs1G l1O@~s8!0#, ~32!

with

Gs5s82E
0

`

@r~z!2rb#dz ~33!

and

G l522s8cot
g

2E0
`

z@r~z!2rb#dz1G l
tip1G l

corner, ~34!

where

G l
tip52s8E

0

`

d x̃E
0

`Fr tip~ x̃ , z̃ ;g!2rS z̃1 x̃ cot
g

2D Gd z̃
12s8E

0

`

d x̃E
2 x̃ cot~g/2!

0

@r tip~ x̃ , z̃ ;g!2r~Z!#d z̃

~35!

and

G l
corner52s8E

0

`

dx8E
x8cot~g/2!

`

@rcorner~x8,z8;g!2r~Z!#dz8.

~36!

In Eq. ~33!, s82 is the area of the walls forming a singl
groove, andr(z) is the density profile in front of a plana
substrate with fluid-wall contact atz5s. This implies the
relation G(g5p)5Gs . For s8→` the distance
sx5s8sin(g/2) between neighboring tips and the dep
D5(s8/2)cot(g/2) of the groove become macroscopica
large. Therefore, in this limitr(x,z;g) decomposes into a
density distribution r tip( x̃ , z̃ ;g) around the tip
( x̃50,z̃50), wherex̃5x1sx/2 and z̃5z1sz/2 ~see Fig. 1!
and a density distributionrcorner(x8,z8;g) in the corner
wherex85x andz85z1D1sz/2. These two density distri-
butions are separated by the density distributionr(Z) of a
fluid near a flat wall whereZ is the normal distance from th
wall ~see Fig. 1!. In the present case one ha

t
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508 56M. SCHOEN AND S. DIETRICH
Z5 z̃ sin(g/2)1 x̃ cos(g/2) and Z5z8sin(g/2)
2x8cos(g/2), respectively. Since in the thermodynamic lim
s8→`, the neighboring tips as well as a tip and the corn
are macroscopically far apart,r tip( x̃→`, z̃ ;g) and
rcorner(x8→`,z8;g)→r(Z). The same behavior is encoun
tered if both x̃ and z̃ or x8 and z8 become large simulta
neously, such that one moves in a direction parallel to
walls of the grooves. This guarantees that the second ter
Eq. ~35! as well as Eq.~36! are indeed finite. The first term
in Eq. ~35! takes into account that the density distributi
above the tip approaches the density profiler(u) of the pla-
nar geometry with the argumentu5 z̃1 x̃ cot(g/2) given by
the vertical distance of the point (x̃ , z̃) from the tip at
z̃52 x̃ cot(g/2). The integrand of this term vanishes ifx̃ or
z̃ are large in any direction. Therefore,G l

tip andG l
corner are

indeed line contributions proportional tos8. The first term in
Eq. ~34! represents a third line contribution which arises b
cause the density profilesr@ z̃1 x̃ cot(g/2)# and r(Z) are
subtracted in Eqs.~35! and~36! respectively, instead ofrb as
in Eq. ~31!. In the limit g→p all three terms in Eq.~34!
vanish in accordance with the relationG(g5p)5Gs .

For the special case of a planar substrate we ob
G* (g5p)5Gs*5249.4 from Eq.~31!, a value which devi-
ates only by about 4% fromG* (g5p)5247.6 obtained in
Ref. @40# from a density-functional calculation for th
present thermodynamic state. Almost perfect agreemen
achieved with numbers from both molecular dynamics@41#
and scaled particle theory @42# which give
G* (g5p)5249.67 @see Fig. 3 in Ref.@40#; note that our
definition of G(g5p) deviates from the one used in Re
@40# by a factor ofs82 because of the additional integration
overx andy in Eq. ~31!#. The integral in the first term on th
right-hand side of Eq.~34!, yielding the first moment of the
density profile, is also amenable to a density-functional c
culation which gives a value of 0.23–0.25 depending on
specific version of the density-functional used@43#. From the
present GCEMC simulations we obtain a value of 0.17.
view of the fact that the first moment of the density profi
enhances the relative weight of details of the oscillatory
cay of the profile compared with the zeroth moment, we a
regard this as satisfactory agreement.

Given the present system sizeG l
tip andG l

corner in Eqs.~35!
and ~36! cannot be computed independently because of
structural interference of tips and corner discussed in S
III A. The latter prevents a direct determination of eith
r tip or rcorner. However, via Eqs. ~32!–~34! the sum
(G l

tip1G l
corner)/s81O(1/s8) can be computed from the den

sity profiles obtained in GCEMC simulations. Results plott
in Fig. 9 show that in accordance with its definition in E
~32! the sum vanishes if the substrate is planar. With
creasingg the sum increases reflecting the growing imp
tance of substrate corrugation on the adsorption of h
spheres in grooves.

IV. SUMMARY AND DISCUSSION

We investigated the density distribution in a fluid of ha
spheres of diameters exposed to a periodically corrugate
hard substrate which is characterized by its dihedral an
r
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g and the depthD of the grooves~see Fig. 1!. Based upon
GCEMC simulations, we studied the variation of structu
properties of the fluid as functions ofg over the range
p/2<g<p; for g5p the substrate is flat. Our main finding
are the following:

~1! GCEMC simulations can be carried out successfu
and reliably for this confined system characterized exc
sively by hard-core interactions~see Fig. 2!. The pronounced
statistical fluctuations require the application of a smooth
procedure to the Monte Carlo data. Figures 2 and 3 dem
strate the reliability of the smoothing algorithm.

~2! Corner and tips of wedges have opposite effects on
packing of fluid molecules in front of the substrate. Wh
the fluid is more ordered in a corner, less order is observe
tips compared with a corresponding planar wall. This diffe
ence increases in tighter wedges with sharper tips~see Fig.
4!.

~3! Lateral and normal extension of regions over whi
corner and tips affect the packing of fluid molecules depe
on g. For a given depthD, specific packing effects close t
the tip and deep in the corner, respectively, start to interf
with decreasingg. In the present simulations this interfe
ence sets in forg<2p/3 andD*52.5 ~see Fig. 5!.

~4! In the thermodynamic limitD@s, G(g) decomposes
into a surface contributionGs proportional to the actual sur
face area of the corrugated substrate and into a line co
bution G l(g) proportional to the linear extension of th
grooves in the direction normal to the lateral corrugation@see
Eqs.~34!–~36!#.

~5! The line contributionG l(g), which vanishes for the
special case of a planar substrate, increases with decrea
g, indicating the importance of substrate corrugation for
adsorption of fluids at nonplanar substrates~see Fig. 9!.
While the line contributionG l is negative, the surface con
tribution, which agrees well with previous work@40–42#, is
positive. AlthoughG l is subdominant toGs , this shows that
the corrugation of a substrate weakens the negative net
sorption on a flat substrate.

For a single rectangular corner, Nijmeijer and van Lee

FIG. 9. (G l
tip*1Gcorner* )/s8*1O(1/s8* ) as a function of the di-

hedral angleg which is a measure of the influence of lateral corr
gation of the walls on adsorption~see main text!. The solid line
represents a fit to the data points (L) intended to guide the eye.
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56 509STRUCTURE OF A HARD-SPHERE FLUID IN HARD WEDGES
wen @44# derived a sum rule which expresses the integ
over the deviation of the density at contact with the walls
the wedge from the corresponding contact value at a
surface in terms of the wall-fluid interfacial tensionswf of a
hard-sphere fluid at a flat hard wall@see Eq.~36!#:

E
0

`FrcornerS x8,z85x8;g5
p

2 D2r~Z50!Gdx852bswfs
2.

~37!

We tried to check whether our GCEMC data fulfill this exa
sum rule. First, we found thatr(x8,z85x8;g5p/2) exhibits
pronounced oscillations as a function ofx8 for x8 close to the
center of the corner. However, for the presently access
system sizes it turned out that the influence of the tip at
upper end of the wedge sets in before the asymptotic v
limx8→`rcorner(x8,z85x8;g5p/2)5r(Z50) is reached so
that the effect of a single corner cannot be isolated w
sufficient precision. To study this interference effect on
above sum rule@see Eq.~36!# we analyzed the integral

I ~x!5E
0

xFrS x8,z85x8;g5
p

2 D2r~Z50!Gdx8. ~38!

Within the range 0.0<x/sx<0.3, I (x) exhibits a damped os
cillatory behavior around a value of approximately 0.9
This number turns out to be rather close to the va
2bswfs

251.0 predicted in Ref.@36# for the current ther-
modynamic state. For larger values ofx, i.e.,
0.3<x/sx<0.5, the oscillations inI (x) become more pro-
nounced because of the onset of the tip influence. From th
observations we conclude that finite-size effects are m
severe for the local-density distribution than for integ
quantities such as the left-hand side of Eq.~37!. This obser-
vation is in line with those for the excess coverageG(g) ~see
Sec. III C!.

Finally, we would like to mention that we obtaine
r(x,z;g) by averaging the local-density distribution over t
sh
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y direction in which the sytem is translationally invarian
However, it would be interesting to resolve the density d
tribution in this direction to test whether the fluid at th
bottom of the groove starts to exhibit solidlike structur
which would be signaled by a periodic density variation
the y direction. However, one should keep in mind that
spatial dimensionsd51 and 2 there is no true long-rang
order. Nonetheless, ind52 one expects a Kosterlitz
Thouless type of phase transition to occur at a specific c
cal densityrc , so that, for densitiesr,rc , a phase exists
which is characterized by exponentially decaying correlat
functions, while forr.rc these correlation functions deca
according to a power law; ind51 there is no phase trans
tion up to close packing. However, this expectation has
yet been established explicitly, either experimentally or
simulations. What one does find is, that ind52 finite-size
systems exhibit a~quasi!-first-order transition to a structur
resembling very closely a solid phase; only in the thermo
namic limit this solidlike structure is expected to be replac
by a Kosterlitz-Thouless phase. Since ind51 the finite ex-
tension of a system also leads to a slower decay of osc
tions in the pair correlation function, it would be interestin
to see whether the one-dimensional grooves of the pre
substrate enhance the formation of the aforementioned s
like structure in aquasi-two-dimensional film near the sub
strate so that the~quasi!-first-order phase transition occurs
a lower density than the substrate-induced~quasi!freezing at
a flat wall which was observed in Ref.@38# only at much
higher densities than the one studied here.
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